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The flow-visualization methods of dye injection, hydrogen-bubble generation and 
paraffin mist are employed to investigate radial flow between parallel circular disks 
with a steady influx. Three distinct flow patterns are observed in the range of Re 
between 1.5 and 50. (1) Steady flow without boundary-layer separation and re- 
attachment, for Re c Re,. (2) A self-controlled flow oscillation which decays further 
downstream, in the range of Re, < Re < Re,. ( 3 )  A self-sustained flow fluctuation 
which develops into a laminal-turbulent transition with a reverse transition further 
downstream, when Re 2 Re,. Re, and Re, are the critical and transition Reynolds 
number, respectively. 

The oscillating flows are caused by a vortex street consisting of vortices (i.e. 
separating annular bubbles) that separate periodically and alternately from both 
disks. Finite-difference solutions of the unsteady vorticity transport equation broadly 
agree with certain experimental observations. The study concludes that the separation 
and reattachment of shear layers in the radial flow through parallel disks are unsteady 
phenomena and the sequence of nucleation, growth, migration and decay of the 
vortices is self-sustained. 

1. Introduction 
Radial flow between parallel circular disks is of interest in a number of physical 

systems such as hydrostatic air bearings, radial diffusers and VTOL aircrafts with 
centrally located, downward-positioned jets. There exist two limiting cases in this 
flow: one is a creeping flow which occurs when the disk gap and flow rate are very 
small, i.e. the local Reynolds number is everywhere less than unity (Licht & Fuller 
1954). This situation leads to a logarithmic decrease in the fluid pressure in the radial 
direction as the inertia effects become negligible in comparison to the viscous terms. 
The other extreme case is an incompressible, non-viscous flow in which the disk 
spacing and flow rate are large, i.e. the local Reynolds number is everywhere much 
greater than unity. Since the viscous effects become negligible, the Bernoulli equation 
yields a radially increasing pressure (Woolard 1954). 

In most practical applications, the local Reynolds number lies between the 
above-mentioned extremes. Benenson & Bott (1961) obtained a solution for the radial 
pressure distribution using a Pohlausen method. The KBrman momentum-integral 
method was employed by Livesey (1960) for a more accurate solution, which was 
compared to experiments by Morgan & Saunders (1960). Sternberg (1954) dealt with 
the problem of a reverse transition from turbulent to laminar flow in the channel. 

t On leave from Department of Mechanical Engineering, Tokyo University of Agriculture and 
Technology, Koganei, Tokyo, Japan. 
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Hunt & Torbe (1962) solved the Navier-Stokes equations for the velocity distribution 
in the flow by means of a power-series approach. The analysis was extended by 
Jackson & Symmons (1965a, b )  to determine the pressure distribution. This solution 
is identical with that of Savage (1964), which was produced by perturbing the 
creeping-flow solution in terms of the downstream coordinate. 

Moller (1963) carried out an extensive theoretical and experimental study of the 
problem. The results for both laminar and turbulent flows, obtained using an integral 
momentum method, agree well with experimental data. He concluded that (i) the 
critical Reynolds number (based on the mean velocity and the hydraulic diameter) 
is 2000 for reverse transition from turbulent to laminar flow; and (ii) the location 
of reattachment of the inlet-corner separation and the minimum-separation bubble 
pressure are functions only of the channel width at high flow rates. Jackson & 
Symmons (1965) performed experiments using two parallel disks with a very small 
central jet of 4 mm diameter and very small disk gaps (0.25, 0.5, 0.75, and 1 .O mm). 
It was concluded that the inertia effects predicted by the various theoretical analyses 
are significantly smaller than indicated by the experimental results. 

Ishizawa (1965, 1966) combined a series-expansion method for the entrance region 
with a momentum-integral method for the downstream region. He predicted no 
separation below Re = 100 and double vortices at Re = 200. These conclusions were 
not confirmed by finite-difference solutions of the steady-state vorticity transport 
equation (Raal 1978). Wilson (1972) investigated the effects of different entry 
conditions. Raal concluded that, above Re = 60, separation is observed with the 
bubble size increasing rapidly with Re. He speculated on the existence of flow 
instability based on the observed concavity in the velocity profile for all Re 2 75. 
Since Ishizawa (1965,1966) and Raal(l972) dealt with the steady vorticity transport 
equation, their analyses cannot be applied to  flow situations involving the formation 
of vortices. 

The present work is concerned with the problem of instability in radial flow 
between parallel disks. Both the time-dependent numerical study and the experiments 
reveal the nucleation, growth, migration and decay of annular separation bubbles (i.e. 
vortex or recirculation zones) in the laminar-flow region. A finite-difference technique 
is employed to solve the full unsteady vorticity transport equation in the theoretical 
approach, while dye-injection, hydrogen-bubble and paraffin-mist methods are used 
to visualize the flow patterns. The experimental study also includes hot-wire 
measurements of the flow field. Theoretical predictions of the periodic and alternate 
formation as well as separation of vortices in the radial outward flow are confirmed 
by experiments. 

2. Experimental approach 
The methods of flow visualization and hot-wire measurement were employed to 

demonstrate that  (i) vortex formation in radial flow through two parallel circular disks 
is, contrary to common belief, not a steady-state phenomenon and (ii) vortices 
separate periodically and alternately from both disks. 

2.1. Flow-visualization methods 
Both liquid- and gas-flow systems were visualized. 

2.1.1. Liquid flow system 
An experimental setup to visualize the flow patterns between parallel disks is shown 

in figure 1. The upper and lower disks, with 192 mm inside diameter ( d , )  and 800 mm 
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(unit: mm) 
Water flow 

FIQIJRE 1. A schematic of the test  apparatus. 

outside diameter (d2),  were made of a 15mm-thick transparent Plexiglas and a 
20 mm-thick aluminium plate, respectively. The disk spacing (8) could be varied by 
adjusting six spacers installed at equal circumferential distance on the circumference 
of 780 mm diameter. Essentially no change in flow behaviour was detected when the 
number of spacers was varied between three and eight, or when the spacers were 
installed at different intervals on the same circumference. In  order to produce a 
radial source flow, water from a constant-head overflow tank was divided into two 
streams, symmetrical but opposite in direction. After flowing through a symmetrical 
pair of screens and straighteners, the two streams were joined at the disk centre and 
flowed radially outward through a cylindrical screen mesh and a circular contraction 
section into the space between the parallel disks. The water was then collected in a 
circular overflow reservoir at the exit from the parallel disks. The flow rate of each 
of the two counter-flow streams was measured separately by a rotameter installed 
immediately downstream of the overflow tank. Both streams were adjusted to the 
same flow rate. The apparatus was firmly fixed on a support frame so that 
axisymmetry and uniform spacing between the disks could be maintained throughout 
an experiment. 

The disk spacing was varied to give s / d l  = 0.026, 0.052 and 0.078. The Reynolds 
number Re in the present study is defined as (ul r l / v )  ( s / d l ) 2 ,  where u1 denotes the 
average inlet-flow velocity at r l ,  the inner radius of the disks, and v is the kinematic 
viscosity. The inlet-flow rate was varied to yield a range of Re from 7.9 to 50. 

Ishizawa (1966) has presented a detailed argument on the definition of the 
Reynolds number for radial flow through parallel disks. When 8/d1 is sufficiently 
small, as in the present study, it does not explicitly affect the flow characteristics. 
Re is, therefore, defined as a product of u l r l / v  and ( s / d l ) 2  in the present work. 
However, for parallel disks having sufficiently large outer diameters, the flow 
phenomena are influenced by the two independent dimensionless parameters u1 r l / v  
and s /d l .  The flow patterns were made visible by dye injection and hydrogen-bubble 
generation. 

Hydrogen-bubble method. Figure 2 illustrates the setup for visualizing the flow by 
1 3 Y L M  154 
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visualized 
through U hydrogen bubble 

0 technique 

FIGURE 2. A schematic of the test setup for flow visualization by hydrogen-bubble generation. 

the hydrogen-bubble method. Multiple fine platinum wires (50 pm in diameter) were 
installed perpendicularly between the disks at  several radial locations along a radius. 
Hydrogen bubbles were generated from the wires through the application of pulsating 
electric current. Under illumination by photoflood lamps, the image was reflected by 
a mirror into a camera or a video camera. The video pictures were analysed for 
unsteady-flow phenomena using a slow-still motion analyser. 

The effect of bubble-generating wires on the flow pattern is well documented in 
a number of references, for example Schraub et al. (1965) and Davis & Fox (1967) 
and hence is not repeated here. The presence of the wire is entirely irrelevant in the 
present application since its sole mission is to detect the occurrence of vortex 
formation rather than the quantitative determination of time-dependent velocity 
fields. 

Some representative results are shown in figures 3 (a) and (b) for s/d, of 0.078 and 
0.026, respectively. The horizontal coordinate X is a dimensionless radial defined as 
( r -r l ) /+s .  X = 0 corresponds to the entrance at r l ,  while the exit is at X = 40.6 for 
s /d ,  = 0.078, or at X = 121.8 for s/dl = 0.026. Both figures show almost uniform 
velocity profiles at  the entrance, irrespective of Re and s/d,. For the lower Re flow 
corresponding to case a in both figures, the velocity profile gradually develops into 
a fully developed parabolic shape. As Re is increased to, or beyond, a critical value 
Re,, flow separation occurs alternately from both walls at the same radial location 
X,, as indicated by an arrow. Downstream from the separation point, the free shear 
layer becomes curled up and stretched for a considerable distance. The double 
vortices generated periodically and alternately on both walls form a vortex street, 
as seen in case b of figure 3 (a) and cases c, d of figure 3 (b). As Re is increased further 
to or beyond Re,, as in case c of figure 3 (a) and case d of figure 3 (b), the flow oscillations 
due to the vortex streets develop into turbulent flow. However, when the velocity, 
which decreases with increasing radius, has been reduced sufficiently, a reverse 
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Re = 7.91 
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FIGURE 3. Photographs of flow patterns between parallel disks: (a) s/d, = 0.078 at Re = 21.6, 
31.4 and 45.5; ( b )  s/d,  = 0.026 at Re = 7.91, 13.9, 15.8 and 19.1. 
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FIQURE 4. Test results for separation point r, as a function of Re for 
8/d = 0.078, (0 0 O), 0.052 (+ + +)  and 0.026 (0 0 0). 

transition from turbulent to laminar flow takes place. It is important to note that 
these still photographs have revealed the occurrence of unsteady separation 
phenomena, but are not suitable for demonstrating annular separation bubbles. An 
examination of the video movie films playing at a low speed or frame by frame did 
show the formation of annular separation bubbles. The locations of X, in figures 3 (a)  
and ( b )  were thus determined. The separation point moved upstream with an increase 
in Re. Figure 4 is a plot of X, versus Re, obtained from the visualization study. The 
radial location of the separation point is r,. The vertical line with a horizontal arrow 
designates the critical Reynolds number Re, for separation to occur. This correlation 
leads to the conclusions that (i) Re, increases with s/d,, (ii) irrespective of s/dl, the 
location of the separation point is determined only by Re, and (iii) the separation 
point moves upstream as Re is increased. 

Dye-injection method. A white poster-colour dye was injected into the radially 
outflowing stream at the centre T = 0 between the two parallel disks. Observations 
and photographic recordings were made directly through the transparent upper disk 
with illumination by photoflood lamps. At a certain radial location, a ring of 
near-circular white roll cells was observed to form spontaneously which then 
propagated downstream (in other words, the ring diameter expanded radially 
outward). The cells were produced by the concentration of the dye resulting from 
vortex formation. The phenomenon could be clearly observed by the naked eye. 
However, if the camera was positioned to cover the entire disk surface, then the flow 
pattern appeared blurred in the photo, so only part of the roll-cell ring was 
photographed, as shown in figure 5. It covers the flow area confined between the two 
radial lines in the left figure, as viewed from above. The photograph covers the 
rectangular area shown in the figure. For sld, of 0.026, figure 4 indicates that vortex 



384 S. Mochizuki and W.-J .  Yang 

I flow area 

FIQURE 5. Photographs of flow patterns in parallel disks with 
s / d ,  = 0.026 at Re = 14.5, visualized by dye injection. 

Disk 
\\ 

Outer rim 
\\ 

FIQURE 6. Vortex formation in the radial flow through two parallel 
circular disks visualized by the paraffin-mist method. 

separation occurred a t  a value of Re, between 13 and 14. Since the photo corresponds 
to  s/d,  = 0.026 and Re = 14.5, vortex formation should have occurred. They indeed 
appeared as bands of circular arc, indicating an axisymmetrical nature of vortex 
formation. 

2.1.2. Gas-$ow system by  parafin-mist method 

Even in a pair of parallel disks without a spacer, our separate study produced 
figure 6, revealing the occurrence of periodic vortex formation. The photo illustrates 
the visualization of the air stream by means of paraffin mists. Hence the periodic 
vortex formation is a phenomenon of unusually strong character which is unaffected 
by the presence of spacers or hydrogen-generating wires. 

2.2 .  Hot-wire measurements 

I n  contrast to the use of water in the flow-visualization test, the velocity variations 
of air in the radial flow between two parallel circular disks were measured by hot 
wires a t  various radial locations. Figure 7 depicts a schematic diagram of the test 
apparatus. The output of the hot wires was fed into a Hewlett Packard Type 3582A, 
2-channel real spectrum analyser. Results from the analyser were recorded on an X-Y 
plotter. Figure 8 shows the locations at which hot-wire measurements were made. 
Eleven 10 mm-diameter holes were drilled on an acrylic disk between r = 135 and 
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FIGURE 7. A schematic of the test apparatus for hot-wire measurements. 
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FIGURE 8. Radial locations of hot-wire probes. 
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FIGURE 9. Details of (a) hot wire, ( b )  plug and (c) their installations. 
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350 mm. Each hole was fitted with a hot-wire probe or a plug when Aow measure- 
ment was not needed. The details of a hot-wire probe, its support, a plug and 
their installations are depicted in figure 9. Figure 10 shows the recording of 
radial-velocity variations monitored by two hot wires which were positioned at  
mutually symmetrical positions, nos. 9 and 11 as shown in figure 8. It is seen 
that the waveforms of the two radial velocities were very similar and of the same 
frequency. This observation confirms the axisymmetry of vortex-generation pheno- 
mena. The phase shift between the two waves was probably due to  a slight deviation 
of the radial velocities in the circumferential direction. 

From the two experiments described in $52.1 and 2.2, it  is concluded that vortex 
formation is axisymmetrical in nature. 
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FIGURE 10. Variation of radial velocities at location nos. 9 and 11 
in parallel disks with a/d, = 0.052 and Re z 25. 

3. Theoretical approach 
3.1. Formulation of the problem 

The physical system to be studied is shown in figure 11. It consists of two parallel 
disks with inner radius rl. An incompressible fluid flows radially outward through the 
spacing s, between the disks. The origin of the cylindrical coordinates ( r ,  0, z )  is fixed 
at  the centre 0. With the use of the stream function $ defined as: 

the unsteady vorticity transport equation for an axisymmetrical flow can be written 

w = -  
wherein the vorticity is 

Here, the variables are defined in dimensionless form as: 

where 7 is the time. By means of the transformation 
1 y =  1-- 
R'  

(2) and (3) become respectively 

(3) 

and 

( I  - Y)2--w az z- aw a$ aw a$ a. 
(1 - -+(l- Y)3- -- a 8  az ay 

(1- Y)3--(l- aw 
Re ay2 ay 

ay2 
Y)4--3(1- a2* Y ) 3 -  

(7) 

Equations (6) and (7) are subject to the following boundary conditions: 

Uniform flow with zero vorticity is imposed a t  the disk entrance, yielding 

$ = Z ,  o = O  a t Y = O .  (8) 
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FIGURE 11. Parallel disks and coordinates. 

The flow profile acquires a fully developed parabolic shape at large distances down- 
stream, Y,, which gives 

$ = ~ { 3 Z - ( ~ ) 2 Z 3 } ,  w = - 3 ( 1 - Y )  (: 2 1 Z at Y =  Y,. 

The no-slip condition along the disk surfaces yields: 

S a2$ S 

dl a 2 2  dl 
$=&-,  w = ( l - Y ) -  a t Z = + - .  

(9) 

3.2. Solution procedure 
The governing equation (6) and the associated expression for vorticity (7) were 
reduced to a set of simultaneous, algebraic finite-difference equations, which related 
the values of the variables at each nodal point to the values at neighbouring grid 
points. This set of algebraic equations together with suitable boundary conditions 
was then solved on a digital computer. 

The following computational procedure was employed : (i) Initially, the entire flow 
field for Re = 32.4 was set at  a fully developed laminar pattern under a no-slip 
condition between two parallel disks. Since asymmetry in the boundary conditions 
was necessary to create a disturbance in the flow field, a slip condition (any values 
of II/ and w ,  for example $ = s / d ,  and w = 1) was suddenly imposed on one section 
of the upper (or lower) disk wall (for example, Y = 0.18 to 0.38). After a brief period 
of the computing operation (8 ranging from 0 to 0.25)) the slip condition was switched 
to a non-slip one. In all other Re cases, the numerical procedure was initiated using 
the flow field for Re = 32.5 at 8 = 96.0 as an initial value at each nodal point. (ii) 
An alternating-direction implicit method was employed to solve the finite-difference 
expressions of (6) for the new values of o at interior grid points. On the other hand, 
the new values of $ were determined from the finite-difference form of (7) by applying 
a successive over-relaxation technique to it in finite-difference form, swept through 
the computational grid line by line in the interior points. A relaxation factor of 1 .82 
was employed to accelerate convergence of the iteration process. (iii) Solutions were 
considered to have converged when the current value $n+l deviated from its previous 
value $" by less than lo-* at all grid points. (iv) The values of w on the wall were 
calculated using Jensen's (1959) formula : 

where the subscripts w, w + 1 and w + 2 indicate the nodal points on the wall, and 
at one and two locations from the wall, respectively. (v) Step (ii) was repeated until 
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the values of w and at all interior points were evaluated. (vi) Computations were 
terminated whenever a steady-flow situation in the case of low-Re flow or a limit-cycle 
(self-sustained) condition in the case of high-Re flow resulted. (vii) Streamwise and 
transverse velocity components were determined from their respective definitions. 

The flow field ( Y, 2)-plane for s/d,  = 0.075 was subdivided into a 50 x 40 uniformly 
spaced grid network (with 50 nodes in the radial direction and 40 nodes in the 
transverse direction). The corresponding mesh size was AY = 0.02 by A 2  = 0.00375. 
The time increment A 8  = 0.0005 was employed in numerical computations for 
Re = 5.0, 10.0, 20.0, 25.0, 27.5, 28.5, 29.0, 30.0, 32.5, 34.0, 35.0, 37.5, and 40.0 while 
At9 of 0.001 was used for Re = 1.25. Numerical experiments with At9 varying from 
0.001 and 0.005 were performed to examine the convergence of the computer solutions 
for Re = 20.0, 30.0 and 37.5. The flow-field variations were practically identical for 
At9 of 0.002 and 0.005. In case of Re = 1.25, the computer solution converged for At9 
equal to or less than 0.05. 

The value of Y,  depended on the disk size since it is defined as 1 - r2/r1.  Numerical 
experiments were conducted for both Re = 20 and 30. In each Re, results were almost 
identical for three values of Y, (1,  0.999 and 0.995, corresponding to R = 00, 1000 
and 200, respectively). The value of Y, in the experimental study is 0.76. 

Numerical integrations were performed using an HITAC M-200H System digital 
computer. The CPU time ranged from 6 to 208 minutes depending upon Re and the 
nature of each flow. When the Reynolds number exceeds a critical value Re, this 
asymmetrical flow caused amplification of unstable disturbances, resulting in the 
formation of vortices. At  a Reynolds number of 27.5 which is below the critical value, 
however, the asymmetry decayed rapidly and computation led to a steady-flow 
situation. A t  higher Reynolds numbers of 30.0, 32.5 and 34.0, self-sustained flow 
oscillations occurred. Therefore Re, lies between 27.5 and 30.0. 

When Re exceeded 35.0, numerical instabilities resulted in the divergence of the 
computations. Re, denotes the Reynolds number for the onset of divergence in the 
computations of the flow field. 

3.3. Computations for various Reynolds numbers 
3.3.1. Re < Re, 

Figure 12 shows the timewise variation of the radial velocity U for Re = 27.5 at 
various locations a, b ,  c ,  d ,  e and f, identified in figure 13. The asymmetrical flow 
pattern introduced as the initial condition triggered flow pulsations which diminished 
with time. It is interesting to compare the transient behaviour of points c ,  d and e ,  
which were at the same radial distance X = 13.3 but different transverse locations 
2 = 0.045, 0 and -0.045, respectively. The oscillation at point d on the plane of 
symmetry decayed very rapidly. The fluctuating patterns of points c and e are 
identical except for a phase difference of 180'. After a large time has elapsed, the entire 
flow field becomes steady with the velocity distribution being symmetrical with 
respect to the radial axis. Some representative velocity profiles at the final steady 
state are illustrated in figures 14,15, and 16 for Re = 1.25,lO.O and 20.0, respectively. 
In  all cases, the uniform inlet profile has entrance-region distance. However, the 
smaller the Re, the shorter is the entrance region, due to a more rapid development 
of the boundary layer. Points of inflexion were visible in some velocity profiles for 
Re = 20.0. These occurred near the entrance, owing to the boundary-layer develop- 
ment. This phenomenon, usually associated with flow instability, was confirmed by 
the experimental results using flow visualization, as seen in figures 3 (a) and (b). This is 
a singular feature of radial flow which cannot be observed in pipe flows. The numerical 
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FIQIJRE 12. Timewise variation of radial velocity at points a, 8 ,  c, d ,  
e and f in parallel disks with s /d ,  = 0.075 at Re = 27.5. 

results for low-Re flow, not shown here, confirmed the observation that a strong 
adverse pressure gradient developed along the wall near the entrance (Ishizawa 1966; 
Raal 1978). The steady-state profiles, figures 14, 15 and 16, almost coincide with 
the theoretical results of Ishizawa (1965, 1966), obtained by the combined series- 
expansion-momentum-integral method. 

3.3.2. Re, > Re 2 Re, 
The flow field which began with an asymmetric pattern experienced a transient 

period during small times. The flow then reached a limit-cycle state in which a 
periodic generation of vortices occurred alternately from both disk walls. Figure 17 
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FIQURE 14. Profiles of radial velocity at various radial locations 
in parallel disks with s/d, = 0.075 at Re = 1.25. 

illustrates the timewise variation of the radial velocity U for Re = 34.0 at various 
locations a, b, c ,  d ,  e andf. As will be disclosed later in figure 19, point a at X = 7.51 
was a short distance upstream from the separation point. The flow oscillation there 
was not sinusoidal, as shown in figure 17 (a) .  However, as the flow passed downstream 
through points b, c ,  d ,  e andf, the shape of the flow pulsation approached a sinusoidal 
form. The non-dimensional period of oscillation decreased very slightly with increasing 
Re, i.e. 1.78,1.76 and 1.75 for Re = 30.0,32.5 and 34.0 respectively. As in the previous 
case of Re = 27.5, the flow oscillations at points c and e were nearly the same in shape 
and amplitude except for a phase difference of 180'. However, their frequency was 
one-half that of the flow pulsation at point d on the plane of symmetry between the 
disk walls. Figure 18 demonstrates the variation of the radial velocity profiles at 
X = 13.3 over approximately one cycle, i.e. between the instants 1 and 5, which 
correspond to 8 = 71.05 and 72.80, respectively. The phase angle between two 
consecutive instants was approximately 90'. It is observed that the maximum-velocity 
and the reverse-flow region near the wall occurred alternately on both sides of the 
plane of symmetry (2 = 0). Although instants 1 and 5 correspond to the beginning 
and end of the cycle, respectively, their radial-velocity profiles were not perfectly 
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FIGURE 15. Profiles of radial velocity at various radial locations 
in parallel disks with aid, = 0.075 at Re = 10.0. 
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FIGURE 16. Profiles of radial velocity at various radial locations 
in parallel disks with aid, = 0.075 at Re = 20.0. 

identical because the oscillating-flow phenomena changed slightly from cycle to  cycle. 
It was disclosed that an increase in Re promoted an enlargement of the reversed-flow 
region together with a shift in the location of the maximum velocity toward the disk 
walls. Figure 19 was obtained by plotting the streamlines a t  approximately 90" 
intervals over the entire cycle of the flow pulsation, i.e. 0 = 71.05 to  72.80. Cases 
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FIQURE 17. Timewise variation of radial velocity a t  points a, b, c, d, 
e and f in parallel disks with aid, = 0.075 at Re = 34.0. 

1-5 correspond to the time instants 1-5 in figure 18. First, one sees the nucleation 
of an annular separation bubble at X of approximately 8.5 on the upper disk. After 
growing to  a certain size, as seen in case 1, the bubble migrated along the wall as 
is shown consecutively in cases 2-5. During the course of the excursion, its size 
diminished gradually. After a certain duration of time, the bubble resembled the 
second one on the upper disk in case 1. It continued to move downstream with 
diminishing size, as seen in cases 2 and 3, and finally disappeared from the wall, case 4. 
The disappearance triggered the formation of an embryo upstream at the same 
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FIGURE 18. Timewise variation of radial velocity profile at 
X = 13.3 in parallel disks with a/d, = 0.075 at Re = 34.0. 

nucleation site, which can be seen as the left bubble on the upper disk in case 4, which 
had already grown substantially. The cycle is self-sustaining. A bubble was alternately 
formed at the same radial distance on the lower-disk wall; the nucleation occurred 
sometime after the bubble on the upper wall departed from the nucleation site, 
the bubble undergoing the same cycle of nucleation, growth, migration and decay as 
its counterpart on the upper wall. Two bubbles were always on each disk, forming a 
vortex street. These vortices caused oscillations in the flow, which were rapidly 
damped out downstream from the site of disappearance. The flow then gradually 
redeveloped further downstream into a parabolic profile. The existence of fluctuations 
in radial flow between parallel disks has remained undetected because i t  decayed 
before reaching the plate exit, where flow measurements would register only 
steady-velocity profiles. 

Although the results for other Reynolds-number flows are not included here, in the 
interest of brevity, the nucleation site was found to move upstream with an increase 
in Re. 

Bakke, Kreider 81, Kreith (1973) performed an experimental study of the velocity 
and turbulence fields in the gap between two parallel co-rotating or stationary disks 
with a source in the centre. This was achieved by hot-wire measurements over a wide 
range of source strengths and disk speeds. I n  section VI-A entitled ‘Radial Poiseuille 
flows ’, Narasimha & Sreenivasan (1979) reviewed the literature on relaminarization 
of flows through two parallel co-rotating or stationary disks. A plot of the critical 
Reynolds number versus the radius for the onset of relaminarization defined the 
transition/ reversion boundaries in radial Poiseuille flow. Both references treat a 
single stream with parabolic velocity profile a t  the entrance, while the present study 
is concerned with two counter-flow streams with uniform velocity profiles a t  the 
entrances. The difference in the entry conditions makes it meaningless to compare 
the results on relaminarization between the two cases. 
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FIQURE 19. Change in streamline distributions over one cycle 

in parallel disks with a/d, = 0.075 at Re = 34.0. 
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3.3.3. Re 2 Re, 
When the Reynolds number Re exceeds a critical value Re, (35.0 in the present 

study), the oscillations of the flow field initiated at small times from an  asymmetrical 
initial flow distribution, are amplified gradually with time. Eventually, the numerics 
of computation result in a divergence of the computed results at a location 
downstream from the inlet corner. The termination of the laminar model reflected 
instability in the real flow, i.e. a transition from laminar to  turbulent flow. 

3.3.4. Justi$cation for the introduction of arti$cial initial condition 
The introduction of a slip wall condition was intended to trigger an initial 

disturbance in the flow field. This procedure is justified since our interest is restricted 
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to the solutions after the effect of the initial disturbance has decayed: for flows at 
Re = 32.5 > Re,, identical self-sustained flow oscillations were produced through (i) 
a brief imposition of a slip condition on a portion of one of two disk walls when the 
entire radial channel was initially at the (symmetrical) Poiseuille-flow situation, and 
(ii) using the (asymmetrical) flow field at Re = 30 as the initial condition for the 
computing operation. No disturbance is needed once the periodic flow oscillation 
becomes self-sustained. Experimentally, the periodic flow-separation phenomenon 
was also observed in the air-flow apparatus of figure 7 with a single-stream influx 
as well as in the liquid-flow setup of figure 1 having a double-stream influx. This 
indicates that the phenomenon is unaffected by the initial disturbance. 

4. Comparison between experiments and theory 
Comparison between the theory and flow-visualization experiments is made based 

on a pair of parallel disks with s/d,  of 0.075 (0.078 for the experiments? to be precise). 
(a) The critical Reynolds number Re, for vortex formation to occur was predicted 
by the theory to be between 27.5 and 30.0, while the experiments provided a value 
of Re, of about 29, as shown in figure 4. (b) This apparatus produced an almost 
uniform approach flow at the plate entrance, which was employed as the inlet 
condition in the theoretical analysis. (c) The points of inflexion in the velocity profiles 
near the entrance were predicted by the theory and experimentally confirmed. (d )  
Both theory and experiments indicate that the separation point (implying the 
nucleation site) moves upstream with increasing Re. More shifting was observed in 
the experiments than predicted. ( e )  The theory indicated the divergence of the flow 
field at  Re, between 34.0 and 35.0. In the experiment, a transition from laminar to 
turbulent flow occurred at Re = 45.5 but was not observed at Re = 31.4. Therefore, 
Re, must lie between 31.4 and 45.5, which confirms the theory. 

5. Conclusions 
A flow-visualization study has disclosed that, as Re is increased from 1.5 to 50.0, 

the steady-influx radial flow between parallel disks follows three distinct patterns : 
(i) steady flow without separation and reattachment of the shear layer with 
Re < Re,; (ii) a self-sustained flow oscillation which decays downstream in the range 
of Re, < Re < Re,; and (iii) a self-controlled flow fluctuation followed by a laminar- 
to-turbulent transition and subsequent reverse transition along the flow passage, 
when Re > Re,. The flow unsteadinesses in (ii) and (iii) are caused by a vortex street 
composed of vortices that separate periodically and alternately from both plates. 
Finite-difference numerical solutions of the unsteady vorticity-transport equation are 
in partial agreement with the experimental observations. Hot-wire measurements 
have confirmed that periodic variations in the radial velocities are axisymmetrical 
in nature. The study demonstrates that the phenomena of shear-layer separation and 
reattachment in the radial flow between parallel disks are, contrary to common 
supposition, unsteady. Once initiated, the sequence of nucleation, growth, migration 
and decay of these vortices is self-sustained. The mechanism needs to be explored 
further. 
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